Abstract

Aiming at the problem of low-frequency vibration and noise reduction in the engineering field, a new two-dimensional tapered scatterer phononic crystals slab is designed and the bandgap characteristics and displacement vector field of the model are simulated by means of finite element method. The numerical simulations show that an extremely wide complete bandgap can be achieved at low frequency. Compared with the reference model [Acoust. Phys. 65 (2019) 322], the first complete bandgap of the designed model has a lower starting frequency and a wider bandgap which is expanded by nearly 15 times. Moreover, the mechanism of bandgap generation is analyzed, the influences of geometric parameters and structure symmetry on the band structure are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.