Abstract

Monte Carlo computer simulations were carried out on filled networks of poly(dimethylsiloxane) (PDMS), which were modeled as composites of crosslinked chains and randomly arranged spherical filler particles. The primary concern of the investigation was the effect of the excluded volume of these particles on the elastomeric properties of the polymers. Calculations were carried out for PDMS chains with different molecular masses between crosslinks, and for filler particles with different sizes and at various volume percentages. Distributions of end-to-end vectors for both unfilled and filled networks were obtained using Monte Carlo simulations based on rotational isomeric state (RIS) theory. More extended configurations, with a higher end-to-end distance, were observed for networks filled with smaller particles. The nominal stress f* and the modulus or reduced nominal stress [f*] were calculated from the distributions of end-to-end vectors using the Mark-Curro approach. Relatively small filler particles were found to increase the non-Gaussian behavior and to increase the normalized moduli above the reference value of unity. Temperature effects on the stress were also investigated. © 1996 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.