Abstract

This letter aims to study the electromechanical vibration of microtubules submerged in cytosol. The microtubule-cytosol interface is established in molecular dynamics simulations, and the electrically excited vibrations of microtubules in cytosol are studied based on a molecular mechanics model. The simulations show that the solid-liquid interface with a nanoscale gap significantly reduces the viscous damping of cytosol on microtubule vibration. Specifically, as far as the radial breathing modes are concerned, cytosol behaves nearly as a rigid body and thus has a very small damping effect on the radial breathing mode of microtubules. This distinctive feature of the radial breathing modes arises from its extremely small amplitude (<0.1 Å), and the relatively large gap between microtubules and cytosol (2.5 Å) is due to the van der Waals interaction. Such a nearly undamped megahertz microtubule vibration excited by an electrical magnetic field may play an important role in designing microtubule-based biosensors, developing novel treatments of diseases, and facilitating signal transduction in cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.