Abstract

A new electromagnetic kinetic electron simulation model that uses a generalized split-weight scheme, where the adiabatic part is adjustable, along with a parallel canonical momentum formulation has been developed in three-dimensional toroidal flux-tube geometry. This model includes electron–ion collisional effects and has been linearly benchmarked. It is found that for H-mode parameters, the nonadiabatic effects of kinetic electrons increase linear growth rates of the ion-temperature-gradient-driven (ITG) modes, mainly due to trapped-electron drive. The ion heat transport is also increased from that obtained with adiabatic electrons. The linear behaviour of the zonal flow is not significantly affected by kinetic electrons. The ion heat transport decreases to below the adiabatic electron level when finite plasma β is included due to finite-β stabilization of the ITG modes. This work is being carried out using the ‘Summit Framework’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.