Abstract

Simulations of H 2 air lifted jet flames are presented, obtained in terms of two-dimensional, first-order conditional moment closure (CMC). The unsteady CMC equation with detailed chemistry is solved without the need for operator splitting, while the accompanying flow field is determined using commercial CFD software employing a k − ε turbulence model. Computed lift-off heights and Favre-averaged species mole fractions are found to be very close to values obtained experimentally for a wide range of jet velocities and fuel–air mixtures. Simulations for which the initial condition is an attached flame and the jet velocity gradually increased do not result in lift-off, a result fully consistent with experimental observation and capturing the hysteresis behaviour of lifted flames. The stabilisation mechanism is explored by quantifying the balance of terms comprising the CMC in the lift-off region. In line with experimental data, it is found that the scalar dissipation rate at the stabilisation height is well below the extinction value, and that axial transport and molecular diffusion play a major role. The radial components of spatial convection and diffusion are always small, fully justifying the alternative approach of employing a cross-stream averaged CMC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call