Abstract

It has been claimed that speech recognition with a cochlear implant is dependent on the frequency alignment of analysis bands in the speech processor with characteristic frequencies (CFs) at electrode locations. However, the most apical electrode location can often have a CF of 1 kHz or more. The use of filters aligned in frequency to relatively basal electrode arrays leads to the loss of lower frequency speech information. This study simulates a frequency-aligned speech processor and common array insertion depths to assess this significance of this loss. Noise-excited vocoders simulated processors driving eight electrodes 2 mm apart. Analysis filters always had center frequencies matching the CFs of the simulated stimulation sites. The simulated insertion depth of the most apical electrode was varied in 2-mm steps between 25 mm (CF 502 Hz) and 17 mm (CF 1851 Hz) from the cochlear base. Identification of consonants, vowels, and words in sentences all showed a significant decline between each of the three more basal simulated electrode configurations. Thus, if implant processors used analysis filters frequency-aligned to electrode CFs, patients whose most apical electrode is 19 mm (CF 1.3 kHz) or less from the cochlear base would suffer a significant loss of speech information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call