Abstract

In the direct digital metal manufacturing, Electron Beam Additive Manufacturing (EBAM) has been used to fabricate sophisticated metallic parts, in a layer by layer fashion, by sintering and/or melting metal powders. In principle, EBAM utilizes a high-energy electron beam to melt and fuse metal powders to build solid parts with various materials, such as Ti-6Al-4V which is very difficult to fabricate using conventional processes. EBAM is one of a few Additive Manufacturing (AM) technologies capable of making full-density metallic parts and has drastically extended AM applications. The heat transfer analysis has been conducted in a simple case of a single-scan path with the effect of powder porosity investigated. In the actual EBAM process, the scan pattern is typically alternate raster. In this study, a coupled thermo-mechanical finite element model was developed to simulate the transient heat transfer, part residual stresses of alternate raster during the EBAM process subject to a moving heat source with a Gaussian volumetric distribution. The developed model was first examined against literature data. The coupled mechanical simulation is able to capture the evolution of the part residual stresses in EBAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.