Abstract

AbstractX‐band radar observations from the 2017 Inner Shelf Dynamics Experiment (ISDE) in central California show multiple persistent and pulsatory rip currents on a relatively straight coastline with alongshore‐varying bathymetry. Although past studies have assessed the characteristics of transient rip currents on alongshore uniform beaches, the relative balance of transient versus steady rip current behavior on nonuniform beaches in realistic wave conditions remains poorly understood. Here, a phase‐resolving Boussinesq‐type wave model (funwaveC) is used to assess the role of alongshore‐varying bathymetry and incident conditions in controlling mean and transient surf zone vorticity and velocity fields and their effect on surf zone exchange. The model simulates wave conditions chosen from the ISDE observations and utilizes both an alongshore‐varying bathymetry estimated from the ISDE radar observations and a uniform bathymetry. Results show that the variable bathymetry significantly increases the alongshore‐ and time‐averaged kinetic energy but that this increase is primarily due to the increase in the standing component resulting from mean circulation patterns, with only small changes in the transient component. A variable bathymetry also increases the spectral energy of surf zone vorticity and time‐averaged vorticity forcing at large spatial scales (>100 m). Wave directional spreading has a large impact on the alongshore‐ and time‐averaged enstrophy and on the spectral energy of surf zone vorticity and vorticity forcing at smaller spatial scales (<100 m). In the presence of a directionally spread wavefield, an alongshore‐varying bathymetry slightly increases the total exchange velocity but has little effect on its transient component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call