Abstract

Nanoporous carbon (NPC) has porosity on the nanometer scale that leads to a large surface area and significantly enhanced chemical activity. These properties set NPC apart from the crystalline forms of carbon, such as graphite or diamond. However, the porous structure of NPC is very complex on the atomic scale and the actual geometry depends on the synthesis process. Large efforts have been spend on characterizing the structure of NPC synthesized under different conditions to better understand the relationship between the structure and the chemical properties of NPC. This chapter reviews these experimental and theoretical investigations and derives the common factors that can be summarized as the characteristics of NPC. A large section is devoted to the structural modeling that together with characterization experiments have provided the picture that NPC consists of crumpled sp 2-bonded graphene-like sheets. Further characterization has revealed that there is a considerable amount of non-hexagonal rings in the lattice. These non-hexagonal rings have a deciding role in the structure and properties of NPC as they induce curvature and combinations of non-hexagonal rings are centers of increased chemical activity. Three chemical reactions are finally presented in detail to exemplify the interaction between molecules and the active centers in the NPC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call