Abstract

The scattering of acoustic plane waves at a sudden area expansion in a flow duct is simulated using the linearized Navier–Stokes equations. The aim is to validate the numerical methodology for the flow duct area expansion, and to investigate the influence of the downstream mean flow on the acoustic scattering properties. A comparison of results from numerical simulations, analytical theory and experiments is presented. It is shown that the results for the acoustic scattering obtained by the different methods gives excellent agreement. For the end correction, the numerical approach is found superior to the analytical model at frequencies where coupling of acoustic and hydrodynamic waves is significant. A study with two additional flow profiles, representing a non-expanding jet with an infinitely thin shear layer, and an immediate expansion, shows that a realistic jet is needed to accurately capture the acoustic–hydrodynamic interaction. A study with several different artificial jet expansions concluded that the acoustic scattering is not significantly dependent on the mean flow profile below the area expansion. The constructed flow profiles give reasonable results although the reflection and transmission coefficients are underestimated, and this deviation seems to be rather independent of frequency for the parameter regime studied. The prediction of the end correction for the constructed mean flow profiles deviates significantly from that for the realistic profile in a Strouhal number regime representing strong coupling between acoustic and hydrodynamic waves. It is concluded that the constructed flow profiles lack the ability to predict the loss of energy to hydrodynamic waves, and that this effect increases with increasing Mach number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.