Abstract

The efficiency of an operating photoelectrochemical solar-fuels-generator system is determined by the system design, the properties and morphology of the system’s components, and the operational conditions. We used a previously developed model comprising of i) the detailed balance limit to describe the currentpotential performance of the photoabsorber component, and ii) the detailed multi-physics device model solving for the governing conservation equations (mass, momentum, species and charge) spatially resolved in the device, to quantify the performance of photoelectrochemical devices. The investigated the performance and its variations as a function of operational conditions, i.e. daily and seasonal irradiation variations, concentration factor of irradiation, and isothermal device temperature. Additionally, the difference in performance of an integrated photoelectrochemical system and a photovoltaic array connected electrically to a standalone electrolyzer system was quantified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.