Abstract

The objective of this study is to investigate the influence of the particle size ratio on texture and force transmission in two-dimensional cohesionless binary granular composties by using molecular dynamics (MD) simulations. Four numerical composite samples, which differ in terms of the particle size ratios, are used in this study. The samples are composed of two constitutive materials with a stiffness ratio of four between the higher one termed as stiff particle and another termed as soft particle. The samples are subjected to an uniaxial confined vertical compression on the upper wall. The results under static conditions show that the particle size ratio mainly affects the contact sub-networks. The coordination number decreases when the particle size ratios (Dstiff /Dsoft = 1.2 − 3.0) increase, contrary to stiff-any case. Considering the spatial arrangement of contact directions, contacts between stiff particles exhibit an anisotropic distribution. On the contrary, the other contacts, i.e. soft-soft and stiff-soft contacts play a role to support the granular system in equilibrium. It is interesting to note that for all the particle size ratios, an exponential distribution and power-law are observed for the strong and weak network, respectively. Furthermore, almost 60% of the entire contacts transmit the weak forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.