Abstract

Dust acoustic (or dust density) waves have been observed in many laboratory dusty plasmas. These low-frequency waves involve the dynamics of highly charged and massive dust grains, and can be excited by the flow of ions relative to dust. In this paper, we consider the nonlinear development of the dust acoustic instability, excited by thermal ion flow, in a collisional plasma containing dust with high kinetic temperature (warm dust). It is shown that under certain conditions there may be a long-wavelength secondary instability in the nonlinear stage as dust gets heated by the waves. The characteristics of the nonlinear development are considered as a function of the relative charge density of the dust. Application to possible experimental parameters is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.