Abstract

We perform molecular simulations to study the self-assembly of tetratethered nanoparticles with a cubic geometry. We develop a minimal model of the tethered nanoscale building block (NBB) to represent a polyhedral oligomeric silsesquioxane (POSS) molecule with polymeric functionalities based on information about the molecular structure and interactions obtained from ab initio density functional theory calculations. Using this model, we explore the rich nanostructures formed from self-assembly of the NBBs and make analogies with the morphologies observed in block copolymer, surfactant, and liquid crystalline systems. On the basis of the assembled structures produced and determination of the location and nature of the order−disorder transitions in the system, we propose phase diagrams to describe the behavior of these molecules. We find that qualitative similarities exist between the phase diagrams for the tetratethered NBBs and those for block copolymer and surfactant systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.