Abstract
The influence of temperature on the oscillatory kinetics of the peroxidase–oxidase reaction was studied theoretically. Assuming Q 10=2 for elementary reactions, the effect of multiplying the rate constants of the model by factors between 0.5 and 2 (corresponding to a 10 °C decrease and increase, respectively, of temperature) was investigated. First, the individual rate constants were successively multiplied by 0.5 or 2 while all other rate constants were kept unchanged. This resulted in either a longer or a shorter period, depending on the rate constant being changed. Multiplication by 0.5 or by 2 generally resulted in opposite effects on the period length. However, the absolute value of this deviation differed. Also, the dynamics changed when halving the dimerization rate of NAD as well as when doubling the rate constant for the reduction of ferric peroxidase by NAD . Next, simulations were performed multiplying all rate constants by one and the same factor, which increased progressively from 0.5 to 2. Intervals were found corresponding to temperature dependency, compensation, and over-compensation, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.