Abstract

Fully 3D nonlinear model simulations for supercritical flow along locations at the California coast, at Cape Mendocino, and Point Sur, are presented. The model results are objectively and subjectively verified against measurements from the Coastal Waves 1996 experiment with good results. They are then analyzed in terms of the flow structure, the impact of the local terrain, the atmospheric forcing on the ocean surface, and the momentum budgets. It is verified that the flow is supercritical (Fr . 1) within a Rossby radius of deformation from the coast and that it can be treated as a reduced-gravity, shallow water flow bounded by a sidewall—the coastal mountain barrier. As the supercritical flow impinges on irregularities in the coastline orientation, expansion fans and hydraulic jumps appear. The modeled Froude number summarizes well the current understanding of the dynamics of these events. In contrast to inviscid, irrotational hydraulic flow, the expansion fans appear as curved lines of equal PBL depth and ‘‘lens-shaped’’ maxima in wind speed residing at the PBL slope. This is a consequence of the realistic treatment of turbulent friction. Modeled mean PBL vertical winds in the hydraulic features range 6;1‐2 cm s21, while larger vertical winds (6;5‐10 cm s21) are due to the flow impinging directly on the mountain barrier. Local terrain features at points or capes perturb the local flow significantly from the idealized case by emitting buoyancy waves. The momentum budget along straight portions of the coast reveals a semigeostrophic balance modified by surface friction. While being geostrophic in the across-coast direction, the along-coast momentum shows a balance between the pressure gradient force and the turbulent friction. In the expansion fans, the flow is ageostrophic, and the imbalance is distributed between turbulent friction and ageostrophic acceleration according to the magnitude of the former. There is also a good correspondence between the magnitude of the local curl of the surface stress vector and the measured depression in sea surface temperature (SST) in areas where the latter is large and the along-coast flow is relatively weak, implying that a substantial portion of the upwelling is driven locally. Supplying the measured SST in the numerical simulations, with a considerable depression along the coast, had only marginal feedback effects on the character of the flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call