Abstract

The residual stresses due to fillet rolling and the bending stresses near the fillets of crankshaft sections under bending fatigue tests are important driving forces to determine the bending fatigue limits of crankshafts. In this paper, the residual stresses and the bending stresses near the fillet of a crankshaft section under fillet rolling and subsequent bending fatigue tests are investigated by a two-dimensional plane strain finite element analysis based on the anisotropic hardening rule of Choi and Pan [Choi KS, Pan J. A generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials (in preparation)]. The evolution equation for the active yield surface during the unloading/reloading process is first presented based on the anisotropic hardening rule of Choi and Pan (in preparation) and the Mises yield function. The tangent modulus procedure of Peirce et al. [Peirce D, Shih CF, Needleman A. A tangent modulus method for rate dependent solids. Comput Struct 1984;18:875–87] for rate-sensitive materials is adopted to derive the constitutive relation. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into ABAQUS. Computations were first conducted for a simple plane strain finite element model under uniaxial monotonic and cyclic loading conditions based on the anisotropic hardening rule, the isotropic and nonlinear kinematic hardening rules of ABAQUS. The results indicate that the plastic response of the material follows the intended input stress–strain data for the anisotropic hardening rule whereas the plastic response depends upon the input strain ranges of the stress–strain data for the nonlinear kinematic hardening rule. Then, a two-dimensional plane-strain finite element analysis of a crankshaft section under fillet rolling and subsequent bending was conducted based on the anisotropic hardening rule of Choi and Pan (in preparation) and the nonlinear kinematic hardening rule of ABAQUS. In general, the trends of the stress distributions based on the two hardening rules are quite similar after the release of roller and under bending. However, the compressive hoop stress based on the anisotropic hardening rule is larger than that based on the nonlinear kinematic hardening rule within the depth of 2 mm from the fillet surface under bending with consideration of the residual stresses of fillet rolling. The critical locations for fatigue crack initiation according to the stress distributions based on the anisotropic hardening rule appear to agree with the experimental observations in bending fatigue tests of crankshaft sections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call