Abstract

We have investigated the structural and dynamic properties of the basal and prismatic facets of the ice Ih/water interface when the solid phase is drawn through the liquid (i.e., sheared relative to the fluid phase). To impose the shear, we utilized a velocity-shearing and scaling approach to reverse non-equilibrium molecular dynamics. This method can create simultaneous temperature and velocity gradients and allow the measurement of transport properties at interfaces. The interfacial width was found to be independent of the relative velocity of the ice and liquid layers over a wide range of shear rates. Decays of molecular orientational time correlation functions gave similar estimates for the width of the interfaces, although the short- and longer-time decay components behave differently closer to the interface. Although both facets of ice are in "stick" boundary conditions in liquid water, the solid-liquid friction coefficients were found to be significantly different for the basal and prismatic facets of ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call