Abstract

Abstract Numerical simulations of the convective storms that form in tornado-producing landfalling hurricanes show that shallow supercells are possible, even though buoyancy is limited because ambient lapse rates are close to moist adiabatic. Updrafts generally reach peak intensity at low levels, often around 2 km above the surface. By comparison, a simulated midlatitude supercell typical of the Great Plains of the United States exhibits a pronounced increase in storm size, both horizontally and vertically. At low levels, however, the hurricane-spawned storms may contain updrafts that rival or exceed in intensity those of Great Plains supercells at similar levels. Simulations made using a tornado-proximity sounding from the remnants of Hurricane Danny in 1985 produce a small but intense supercell, a finding consistent with the available observational evidence. Although the amplitude of parcel buoyancy is often small in hurricane environments, its concentration in the strongly sheared lower troposphere pro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.