Abstract

Scuffing, a major cause of failure in automobile engines, is considered as a dynamic process in this study. Local adhesions may occur randomly in lubricated contacts due to the existence of asperity contact and breakdown of lubricating films. Scuffing would take place if the local events develop rapidly into a large-scale plastic deformation and catastrophic failure. A system dynamic model established in the present paper allows one to predict dynamic behavior of a tribological system through numerical solutions of a group of differential equations. Results show that a transition to adhesion begins when the surface temperature goes beyond a critical value, followed by a rapid growth of the adhesion area. To understand the mechanism of scuffing, further investigations are required. keyword: scuffing, surface temperature, dynamic system, catastrophic failure

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.