Abstract

The Gaussian phase-space representation can be used to implement quantum dynamics for fermionic particles numerically. To improve numerical results, we explore the use of dynamical diffusion gauges in such implementations. This is achieved by benchmarking quantum dynamics of few-body systems against independent exact solutions. A diffusion gauge is implemented here as a so-called noise-matrix, which satisfies a matrix equation defined by the corresponding Fokker–Planck equation of the phase-space representation. For the physical systems with fermionic particles considered here, the numerical evaluation of the new diffusion gauges allows us to double the practical simulation time, compared with hitherto known analytic noise-matrices. This development may have far reaching consequences for future quantum dynamical simulations of many-body systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.