Abstract

Abstract In this paper, the authors analyze simulations of present and future climates in the western United States performed with four regional climate models (RCMs) nested within two global ocean–atmosphere climate models. The primary goal here is to assess the range of regional climate responses to increased greenhouse gases in available RCM simulations. The four RCMs used different geographical domains, different increased greenhouse gas scenarios for future-climate simulations, and (in some cases) different lateral boundary conditions. For simulations of the present climate, RCM results are compared to observations and to results of the GCM that provided lateral boundary conditions to the RCM. For future-climate (increased greenhouse gas) simulations, RCM results are compared to each other and to results of the driving GCMs. When results are spatially averaged over the western United States, it is found that the results of each RCM closely follow those of the driving GCM in the same region in both present and future climates. This is true even though the study area is in some cases a small fraction of the RCM domain. Precipitation responses predicted by the RCMs in many regions are not statistically significant compared to interannual variability. Where the predicted precipitation responses are statistically significant, they are positive. The models agree that near-surface temperatures will increase, but do not agree on the spatial pattern of this increase. The four RCMs produce very different estimates of water content of snow in the present climate, and of the change in this water content in response to increased greenhouse gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.