Abstract

Scale-free phase-field approach and corresponding finite element method simulations for multivariant martensitic phase transformation from cubic Si I to tetragonal Si II in a polycrystalline aggregate are presented. Important features of the model are large and very anisotropic transformation strain tensor ɛt={0.1753;0.1753;−0.447} and stress-tensor dependent athermal dissipative threshold for transformation, which produce essential challenges for computations. 3D polycrystals with stochastically oriented grains are subjected to uniaxial strain- and stress-controlled loadings under periodic boundary conditions and zero averaged lateral strains. Coupled evolution of discrete martensitic microstructure, volume fractions of martensitic variants and Si II, stress and transformation strain tensors, and texture are presented and analyzed. Macroscopic variables effectively representing multivariant transformational behavior are introduced. Macroscopic stress–strain and transformational behavior for 55 and 910 grains are close. Large transformation strains and grain boundaries lead to huge internal stresses of tens GPa, which affect microstructure evolution and macroscopic behavior. In contrast to a single crystal, the local mechanical instabilities due to phase transformation and negative local tangent modulus are stabilized at the macroscale by arresting/slowing the growth of Si II regions by the grain boundaries. This leads to increasing stress during transformation. The developed methodology can be used for studying similar phase transformations with large transformation strains and for further development by including plastic strain and strain-induced transformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call