Abstract

Simulations have been performed to determine the multipactor breakdown threshold in a microwave structure composed of two parallel cylinders, chosen to be an approximate model of an open helix microwave antenna system. The electromagnetic field between the cylinders is available in closed analytical form, and a Monte Carlo software has been developed to calculate the 2-D electron trajectories and to simulate the multipactor avalanche in this inhomogeneous electric field for different ratios of cylinder radius and distance of separation between the cylinders. The results are compared with those of a recently published analytical theory and show a qualitatively good agreement. In particular, it is confirmed that, for a given distance between cylinders, there exists a smallest cylinder radius below which no two-sided multipactor breakdown can occur. The basic physical explanation is a loss mechanism for secondary emitted electrons that is caused by the curvature of the cylinder surfaces together with the strong electric field at the surfaces. The results imply that the breakdown threshold in realistic open helix antennas is significantly higher than those predicted using extrapolations based on resonance theory and the classical two parallel plate model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.