Abstract
This study quantitatively evaluates the overall performance of nine single‐column models (SCMs) and four cloud‐resolving models (CRMs) in simulating a strong midlatitude frontal cloud system taken from the spring 2000 Cloud Intensive Observational Period at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The evaluation data are an analysis product of constrained variational analysis of the ARM observations and the cloud data collected from the ARM ground active remote sensors (i.e., cloud radar, lidar, and laser ceilometers) and satellite retrievals. Both the selected SCMs and CRMs can typically capture the bulk characteristics of the frontal system and the frontal precipitation. However, there are significant differences in detailed structures of the frontal clouds. Both CRMs and SCMs overestimate high thin cirrus clouds before the main frontal passage. During the passage of a front with strong upward motion, CRMs underestimate middle and low clouds while SCMs overestimate clouds at the levels above 765 hPa. All CRMs and some SCMs also underestimated the middle clouds after the frontal passage. There are also large differences in the model simulations of cloud condensates owing to differences in parameterizations; however, the differences among intercompared models are smaller in the CRMs than the SCMs. In general, the CRM‐simulated cloud water and ice are comparable with observations, while most SCMs underestimated cloud water. SCMs show huge biases varying from large overestimates to equally large underestimates of cloud ice. Many of these model biases could be traced to the lack of subgrid‐scale dynamical structure in the applied forcing fields and the lack of organized mesoscale hydrometeor advections. Other potential reasons for these model errors are also discussed in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.