Abstract

Conventional bearing estimation procedures employ planewave steering vectors as replicas of the true field and seek to resolve in angle by maximizing a power function representing the agreement between actual and replica fields. For vertical arrays in oceanic waveguides the received field depends on range and depth, and it is natural to replace the look-direction ( \theta ) by a look-position ( r, z ). Thus an environmental model is constructed by specifying ocean depth, sound speed profile, bottom properties, etc., and a propagation model is employed to construct a replica of the field that would be received on the array for a particular source position. The usual estimators (e.g., Bartlett or maximum likelihood) are then used to gauge the agreement between actual and replica fields and the true source position is identified as that position where the agreement is best. The performance of this kind of matched-field processing is strongly affected by the environment. In particular, we demonstrate through simulations that for a deep-water Pacific environment dominated by waterborne paths, ambiguities or sidelobes are associated with convergence zones. In the absence of mismatch between replica and actual fields we find that a 16-element array performs extremely well in low-frequency regimes. Mismatch caused by uncertainties in phone positions, bottom parameters, ocean sound speed, surface and bottom roughness, etc., causes degradation in localization performance. The impact of some of these effects on conventional and maximum likelihood estimators is examined through simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call