Abstract

Liquid-to-solid mass transfer in a microfluidized bed consisting of monosized, spherical particles in a Newtonian liquid has been studied numerically. The simulations fully resolve the laminar, near-creeping flow of the solid–liquid suspension. In addition, passive scalar concentrations in the liquid at high Schmidt number (Sc up to 104) have been determined. Solids volume fractions are in the range 0.18–0.27. The concentration boundary conditions are such that the scalar can be thought of as being adsorbed on the solid particle surfaces. The simulations quantify the overall adsorption performance of the fluidized bed, and they provide insights in local variations (per particle and over individual particle surfaces) of mass transfer rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.