Abstract

Cross flow phenomena between connected sub-channels are studied by means of numerical simulations based on lattice-Boltzmann discretization. The cross (that is lateral) transfer is largely due to macroscopic instabilities developing at two shear layers. The characteristic size and advection velocity of the instabilities favorably compare with experimental results from the literature on a geometrically similar system. The strength of the cross flow strongly depends on the Reynolds number, with cross flow developing only for Reynolds numbers (based on macroscopic flow quantities) larger than 1360. Mass transfer between the sub-channels has been assessed by adding a passive scalar to the flow and solving its transport equation. As a result of the intimate connection of cross flow and lateral mass transfer, also the mass transfer coefficient is a pronounced function of Re.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.