Abstract
ABSTRACTSimulations of Ge+ and C+ implantations in Si were performed to study bandgap grading in the SiGeC/Si heterojunction bipolar transistor (HBT). Although no bandgap discontinuity was observed at the base-emitter junction, it was found that a wide-bandgap emitter and a narrow-bandgap base with proper bandgap grading were obtainable with implantation. Electrical characterization of SiGe and SiGeC diodes formed by Ge+ and C+ implantations in Si was carried out. Current-voltage (I-V) measurement results confirm that carbon doping improves the crystalline quality of the germanium-implanted layer. On the other hand, capacitance-voltage (C-V) measurements indicate that both germanium and carbon implantations result in considerable dopant deactivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.