Abstract

A new approach to modeling the flow through a porous medium with a well defined structure is presented. This approach entailed modeling an idealized open cell metal foam based on a fundamental periodic unit of eight cells and solving the flow through the three-dimensional cellular unit. To model an infinitely large matrix, periodic boundary conditions were set on the walls parallel to the flow direction, while a pseudo-periodic boundary condition with a prescribed volumetric flow rate was set over the inlet–outlet pair of the unit cell. The pressure drop data of the flow through the cellular unit were then compared on a length-normalized basis against experimental data. The pressure drop values predicted by the simulations were consistently 25% lower than the values obtained in the experiments on a similar foam and under identical flow conditions. One explanation for the discrepancy between the two sets of data is the lack of pressure drop increasing wall effects in the simulations. The increase in the pressure drop from wall effects in the simulation was quantified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.