Abstract

This paper presents a generalized modified Poisson–Nernst–Planck (MPNP) model derived from first principles based on excess chemical potential and Langmuir activity coefficient to simulate electric double-layer dynamics in asymmetric electrolytes. The model accounts simultaneously for (1) asymmetric electrolytes with (2) multiple ion species, (3) finite ion sizes, and (4) Stern and diffuse layers along with Ohmic potential drop in the electrode. It was used to simulate cyclic voltammetry (CV) measurements for binary asymmetric electrolytes. The results demonstrated that the current density increased significantly with decreasing ion diameter and/or increasing valency |zi| of either ion species. By contrast, the ion diffusion coefficients affected the CV curves and capacitance only at large scan rates. Dimensional analysis was also performed, and 11 dimensionless numbers were identified to govern the CV measurements of the electric double layer in binary asymmetric electrolytes between two identical planar electrodes of finite thickness. A self-similar behavior was identified for the electric double-layer integral capacitance estimated from CV measurement simulations. Two regimes were identified by comparing the half cycle period τCV and the “RC time scale” τRC corresponding to the characteristic time of ions’ electrodiffusion. For τRC ≪ τCV, quasi-equilibrium conditions prevailed and the capacitance was diffusion-independent while for τRC ≫ τCV, the capacitance was diffusion-limited. The effect of the electrode was captured by the dimensionless electrode electrical conductivity representing the ratio of characteristic times associated with charge transport in the electrolyte and that in the electrode. The model developed here will be useful for simulating and designing various practical electrochemical, colloidal, and biological systems for a wide range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call