Abstract

The multi-conjugate adaptive optics (MCAO) systems proposed for future giant telescopes will require new, computationally efficient, concepts for wavefront reconstruction due to their very large number of deformable mirror (DM) actuators and wavefront sensor (WFS) measurements. Preliminary versions of such reconstruction algorithms have recently been developed, and simulations of MCAO systems with 9000 or more DM actuators and 33000 or more WFS measurements are now possible using a single desktop computer. However, the results obtained to date are limited to the case of open-loop wavefront reconstruction, and more work is needed to develop computationally efficient reconstructors for the more realistic case of a closed-loop MCAO system that iteratively measures and corrects time-varying wavefront distortions. In this paper, we describe and investigate two reconstruction concepts for this application. The first approach assumes that knowledge of the DM actuator command vector and the DM-to-WFS influence matrix may be used to convert a closed-loop WFS measurement into an accurate estimate of the corresponding open-loop measurement, so that a standard open-loop wavefront reconstructor may be applied. The second approach is a very coarse (but computationally efficient) approximation to computing the minimum variance wavefront reconstructor for the residual wavefront errors in a closed-loop AO system. Sample simulation results are presented for both concepts with natural guide star (NGS) AO and laser guide star (LGS) MCAO systems on 8- and 32-meter class telescopes. The first approach yields a stable control loop with closed-loop performance comparable to the open-loop estimation accuracy of the classical minimum variance reconstructor. The second approach is unstable when implemented in a type I servo system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.