Abstract

Here, we present an innovative imaging technology for breast cancer using gamma-ray stimulated spectroscopy based on the nuclear resonance fluorescence (NRF) technique. In NRF, a nucleus of a given isotope selectively absorbs gamma rays with energy exactly equal to one of its quantized energy states, emitting an outgoing gamma ray with energy nearly identical to that of the incident gamma ray. Due to its application of NRF, gamma-ray stimulated spectroscopy is sensitive to trace element concentration changes, which are suspected to occur at early stages of breast cancer, and therefore can be potentially used to noninvasively detect and diagnose cancer in its early stages. Using Monte-Carlo simulations, we have designed and demonstrated an imaging system that uses gamma-ray stimulated spectroscopy for visualizing breast cancer. We show that gamma-ray stimulated spectroscopy is able to visualize breast cancer lesions based primarily on the differences in the concentrations of trace elements between diseased and healthy tissue, rather than differences in density that are crucial for X-ray mammography. The technique shows potential for early breast cancer detection; however, improvements are needed in gamma-ray laser technology for the technique to become a clinically feasible method of detecting and diagnosing cancer at early stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.