Abstract

We present numerical solutions of the semi-empirical model of self-propagating fluid pulses (auto-pulses) through the channel simulating an artificial artery. The key mechanism behind the model is the active motion of the walls in line with the earlier model of Roberts. Our model is autonomous, nonlinear and is based on the partial differential equation describing the displacement of the wall in time and along the channel. A theoretical plane configuration is adopted for the walls at rest. For solving the equation we used the One-dimensional Integrated Radial Basis Function Network (1D-IRBFN) method. We demonstrated that different initial conditions always lead to the settling of pulse trains where an individual pulse has certain speed and amplitude controlled by the governing equation. A variety of pulse solutions is obtained using homogeneous and periodic boundary conditions. The dynamics of one, two, and three pulses per period are explored. The fluid mass flux due to the pulses is calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.