Abstract

This study investigates the novel approach of direct liquid ammonia injection into the combustion chamber of a compression ignition engine. Unlike traditional gaseous ammonia port injection, this method shows promise in reducing ammonia slip and emissions. To simulate and analyze the behavior of the liquid ammonia spray, we employed numerical models based on existing literature on flashing and non-flashing spray simulations, as well as recent experimental studies on ammonia spray characteristics using a gasoline direct injection (GDI) injector. Our approach utilized a Lagrangian discrete phase modelling technique to perform a series of three-dimensional computational fluid dynamics (CFD) simulations. The primary objectives of this research were to evaluate the evaporation process of ammonia and its cooling effect, as well as to gain insights into mixture formation within the engine cylinder under different operating conditions. The simulations encompassed the entire engine cycle, considering a multi-hole GDI ammonia spray in conjunction with pilot n-heptane, a diesel surrogate, in equal proportions on an energy basis. Three distinct injection timings for ammonia were examined, leading to varying thermodynamic conditions within the combustion chamber during each spray formation. Consequently, different modelling parameters and initial conditions were necessary to accurately replicate the spray behavior. To address this, we proposed a systematic procedure for assigning pre-defined spray angles. The non-reacting, evaporating spray simulations yielded valuable insights into the mixture formation process, which guided our analysis. Finally, reacting conditions were considered to evaluate engine performance and resulting exhaust gas emissions. This study provides a comprehensive overview of critical aspects related to direct ammonia injection in internal combustion engine (ICE) systems. Moreover, it uncovers performance trends that can serve as a foundation for future investigations in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call