Abstract

The spectral responsivity of a predictable quantum efficient detector (PQED) is calculated based on the responsivity of an ideal quantum detector and taking into account reflection losses from the surface of the photodiode and internal charge-carrier gains/losses inside the diode. The internal quantum deficiency (IQD) is obtained from simulations with the PC1D software using the material data of the produced PQED photodiodes. The results indicate that at room temperature the predicted IQD of the PQED is close to zero with an uncertainty of about 100 ppm over the visible range. It is further concluded that a primary standard of visible optical power with an uncertainty of approximately 1 ppm is achievable using the PQED at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.