Abstract
We study the timing effects of nonrelativistic wave packet tunneling through a barrier using a numerical simulation readily accessible to an undergraduate audience. We demonstrate that the peak of the transmitted packet can sometimes emerge from the barrier ahead of the peak of an undisturbed wave packet that does not encounter a barrier. Under the right circumstances, this effect can give the appearance that transmission through the barrier occurs at superluminal speeds. We demonstrate that this seemingly paradoxical effect is not all that puzzling. Rather, components from the front of the incoming wave packet are preferentially transmitted, forming a transmitted packet ahead of the average of the incoming wave packet but not ahead of the leading edge of that packet. Our studies also show how the timing depends on barrier height and width, consistent with expectations based on the different energy components of the wave packet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.