Abstract

The problem of existence of stable nonlinear groups of gravity waves in deep water is considered by means of laboratory and numerical simulations with the focus on strongly nonlinear waves. Wave groups with steepness up to Acrωm2/g ≈ 0.30 are reproduced in laboratory experiments (Acr is the wave crest amplitude, ωm is the mean angular frequency, and g is the gravity acceleration). We show that the groups remain stable and exhibit neither noticeable radiation nor structural transformation for more than 60 wavelengths or about 15-30 group lengths. These solitary wave patterns differ from the conventional envelope solitons, as only a few individual waves are contained in the group. Very good agreement is obtained between the laboratory results and numerical simulations of the potential Euler equations. The envelope soliton solution of the nonlinear Schrödinger equation is shown to be a reasonable first approximation for specifying the wave-maker driving signal. The short intense envelope solitons possess vertical asymmetry similar to regular Stokes waves with the same frequency and crest amplitude. Nonlinearity is found to have remarkably stronger effect on the speed of envelope solitons in comparison to the nonlinear correction to the Stokes wave velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.