Abstract
Image reconstruction based on deep learning has become an effective tool in fluorescence microscopy. Most deep learning reconstruction methods ignore the mechanism of the imaging process where a large number of datasets are required. In addition, a lot of time is spent solving the aliasing problem from multi-scaled image pairs for data pre-processing. Here we demonstrate an improved generative adversarial network for image scanning microscopy (ISM) that can be trained by simulation data and has good generalization. Based on physical imaging models, this method can generate matching image pairs from simulation images and uses them as datasets for network training, without capturing a large number of real ISM images and avoiding image alignment preprocessing. Simulation and experimental results show that this simulation data-driven method improves the imaging quality of conventional microscopic images and reduces the cost of experiments. This method provides inspiration for optimizing network generalizability of the deep learning network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.