Abstract

This study is devoted to the appointment scheduling (AS) for a sequence of surgeries with random durations served by multiple operating rooms (Multi-OR). Surgeries are assigned to ORs dynamically on a first-come, first-serve (FCFS) basis. It materially differs from past literature in the sense that dynamic assignments are proactively anticipated in the determination of appointment times. A discrete-event framework is proposed to model the execution of the surgery schedule and to evaluate the sample path gradient of a total cost incurred by surgeon waiting, OR idling, and OR overtime. The sample path cost function is shown to be unimodal, Lipchitz-continuous, and differentiable w.p.1 and the expected cost function continuously differentiable. A stochastic approximation algorithm based on unbiased gradient estimators is proposed and extensive numerical experiments suggest that it converges to a global optimum. A series of numerical experiments is performed to show the significant benefits of the Multi-OR setting and properties of the optimal solution with respect to various system parameters such as cost structure and numbers of surgeries and ORs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.