Abstract

The ever-increasing demand for intercity travel, as well as competition among all modes of transportation, is an unavoidable reality that today’s urban rail transit system must deal with. To meet this problem, urban railway companies must try to make better use of their existing plans and resources. Analytical approaches or simulation modeling can be used to develop or change a rail schedule to reflect the appropriate passenger demand. However, in the case of complex railway networks with several interlocking zones, analytical methods frequently have drawbacks. The goal of this article is to create a new simulation-based optimization model for the Bangkok railway system that takes into account the real assumptions and requirements in the railway system, such as uncertainty. The common particle swarm optimization (PSO) technique is combined with the developed simulation model to optimize the headways for each period in each day. Two different objective functions are incorporated into the models to consider both customer satisfaction by reducing the average waiting time and railway management satisfaction by reducing needed energy usage (e.g., reducing operating trains). The results obtained using a real dataset from the Bangkok railway system demonstrate that the simulation-based optimization approach for robust train service timetable scheduling, which incorporates both passenger waiting times and the number of operating trains as equally important objectives, successfully achieved an average waiting time of 11.02 min (with a standard deviation of 1.65 min) across all time intervals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.