Abstract
A Bayesian simulation-based method is developed for estimating a class of interest rate models known as affine term structure (ATS) models. The technique is based on a Markov chain Monte Carlo algorithm, with the discrete observations on yields augmented by additional higher frequency latent data. The introduction of augmented yield data reduces the bias associated with estimating a continuous time process using an approximate discrete time model. The technique is demonstrated using a single-factor term structure model that possesses closed-form solutions for the transition densities. Numerical application of the method is demonstrated using simulated data. The results show that increasing the degree of augmentation in the yield curve does, overall, produce estimates that more closely reflect those based on the use of the exact transition functions. However, the results also indicate that the benefits of increasing the degree of augmentation may, to some extent, be offset by the increased uncertainty in estimation associated with the introduction of additional highly correlated latent yields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.