Abstract

Transmit/receive L/C loop arrays with the induced current elimination (ICE) or magnetic wall decoupling method has shown high signal-to-noise (SNR) and excellent parallel imaging ability for MR imaging at ultrahigh fields, e.g., 7 T. In this study, we aim to numerically analyze the performance of an eight-channel ICE-decoupled loop array at 7 T. Three dimensional (3-D) electromagnetic (EM) and radiofrequency (RF) circuit co-simulation approach was employed. The values of all capacitors were obtained by optimizing the S-parameters of all coil elements. The EM simulation accurately modeled the coil structure, the phantom and the excitation. All coil elements were well matched to 50 ohm and the isolation between any two coil elements was better -15 dB. The simulated S parameters were exactly similar with the experimental results, indicating the simulation results were reliable. Compared with the conventional capacitively decoupled array, the ICE-decoupled array had higher sensitivity at the peripheral areas of the image subjects due to the shielding effect of the decoupling loops. The increased receive sensitivity resulted in an improvement of signal intensity and SNR for the ICE-decoupled array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call