Abstract

A simulation tool was designed for analyzing various experimental setups that include the ability to model detailed chemical reaction schemes for in-situ combustion (ISC) analysis.,. The simulation tool was illustrated with a theoretical example to the extent of CO oxidation in a gaseous phase takes place during ISC. The models in the simulation tool are based on fundamental conservation laws, physical correlations for porous media properties, and property databases available in literature. Emphasis is made on the analysis of chemical reactions in the gas phase, a characteristic that may be useful when temperatures are above 700°C and oxygen, unburned hydrocarbons, and CO coexist. The three modules of the simulation tool: (i) Kinetic cell, (ii) One-dimensional reactor, and (iii) Combustion tube, can be used to represent in detail the processes taking place in the typical laboratory-scale equipment used to characterize ISC. Tools for the analysis of transport phenomena and multiphase reactions, present in all three models, can support the process of finding chemical kinetic parameters for an easier calculation of device-independent kinetic constants. Four applications have the simulator scope: (i) Analysis of reactions in the gas phase, (ii) Axial gradients in a kinetic cell, (iii) Pressure build-up in a combustion tube, and (iv) Ignition in a combustion tube. These examples highlight the importance that homogeneous reactions may have in these systems and the existence, under certain conditions, of concentration gradients that are normally neglected, and can affect the interpretation of ISC experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call