Abstract

Multiple crystal structures of a single kind of protein can be generally separated into several groups from their conformational deviations. A major factor causing the structural separation is the space group of crystals, in which precipitating agents have a strong influence on the packing of proteins in a crystal. In this study, we examined whether the separated groups of protein crystal structures can be merged into one group by computer simulation without a precipitating agent. The crystal structures of hen egg-white lysozyme (HEWL), myoglobin (Mb), hemoglobin (Hb), and human serum albumin (HSA) were selected as samples for molecular dynamics (MD) simulation. For example, 25 MD simulations were performed for HEWL, with 25 computational models being built from different crystal structures. Cluster analysis was applied to 25 snapshot structures obtained at the same time point from the respective simulation trajectories and the cluster analysis was repeated every 5 ns during the simulations. As a result, the separated cluster groups were basically merged into one group with only a few exceptions. In HEWL, noticeable conformational changes from the crystal structures were observed after heating. The dependence of the simulated structures on the initial crystals was diminished, and all of the clusters were merged into one group at 20 ns of MD simulation. In Mb, all of the clusters were merged into one group at 10 ns. For Hb and HSA, the time necessary for merging the structures became longer. In Hb, the initial group separation gradually became ambiguous after pre-equilibration, and the time required for diminishing the dependence on the crystal structure was 130 ns except for one cluster group. In HSA, 160 ns was necessary for all of the clusters to be merged into one group. These times provide important index for judging the equilibration of protein simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.