Abstract

The standard paradigm of cosmology assumes General Relativity (GR) is a valid theory for gravity at scales in which it has not been properly tested. Developing novel tests of GR and its alternatives is crucial if we want to give strength to the model or find departures from GR in the data. Since alternatives to GR are usually defined through nonlinear equations, designing new tests for these theories implies a jump in complexity and thus, a need for refining the simulation techniques. We summarize existing techniques for dealing with modified gravity (MG) in the context of cosmological simulations. [Formula: see text]-body codes for MG are usually based on standard gravity codes. We describe the required extensions, classifying the models not according to their original motivation, but by the numerical challenges that must be faced by numericists. MG models usually give rise to elliptic equations, for which multigrid techniques are well suited. Thus, we devote a large fraction of this review to describing this particular technique. Contrary to other reviews on multigrid methods, we focus on the specific techniques that are required to solve MG equations and describe useful tricks. Finally, we describe extensions for going beyond the static approximation and dealing with baryons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.