Abstract

In this paper, we report a numerical method for analyzing optical radiation from a two-level atom. The proposed method can consistently consider the optical emission and absorption process of an atom and also the interaction between atoms through their interaction with a radiation field. The numerical model is based on a damping oscillator description of a dipole current, which is a classical model of atomic transition and is implemented with a finite-difference time-domain method. Using the method, we successfully simulate the spontaneous emission phenomena in a vacuum, where the interaction between an atom and a radiated field plays an important role. We also simulate the radiation from an atom embedded in a photonic crystal (PhC) cavity. As a result, an atom-cavity field interaction is sucessfuly incorporated in the simulation, and the enhancement of the optical emission rate of an excited atom is explained. The method considers the effect of the interaction between atoms through the radiated field. We simulate the optical emission process of the multiple atoms and show that an enhancement of the emission rate can occur owing to an atom-atom interaction (superradiance) (R. H. Dicke, Phys. Rev. 93, 99 [1954]). We also show that the emission rate is suppressed by the effect of the destructive dipole-dipole interaction under an out-of-phase excitation condition (subradiance).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.