Abstract

As the physical dimensions of cell transistors in dynamic random-access memory (DRAM) have been aggressively scaled down, buried-channel-array transistors (BCATs) have been adopted in industry to suppress short channel effects and to achieve a better performance. In very aggressively scaled-down BCATs, the impact of structural variations on the electrical characteristics can be more significant than expected. Using a technology computer-aided design (TCAD) tool, the structural variations in BCAT (e.g., the aspect ratio of the BCAT recess-to-gate length, BCAT depth, junction depth, fin width, and fin fillet radius) were simulated to enable a quantitative understanding of its impact on the device characteristics, such as the input/output characteristics, threshold voltage, subthreshold swing, on-/off-current ratio, and drain-induced barrier lowering. This work paves the road for the design of a variation-robust BCAT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.