Abstract
Sediments have a significant influence on the overlying water, and nutrient release from sediments is an important source for lake eutrophication, particularly in shallow lakes. Sediment resuspension is primarily driven by wind-induced currents. In this research, the correlation between release rate of suspended sediment and flow velocity was studied, and an experiment on hydrodynamic forces was conducted in a rectangle flume using water and sediments collected from three sites in Lake Taihu, a eutrophic lake in China. It was shown that the starting velocities of sediment in Lake Taihu at three different incipient standards gained from the experiment were 15, 30, and 40 cm s −1 and the release rate of suspended sediment could reach up to 643.4, 5377.1, and 13980.5 g m −2 d −1, respectively. Based on the experiment, a water quantity and quality numerical model of wind-induced current with sediment pollution for Lake Taihu was developed. The model was calibrated and validated by applying it to the study of the water quality of Lake Taihu. The calculated values were generally in good agreement with field observations, which indicated that the developed model could represent the dynamics of sediment resuspension to a certain extent. This study provides a new approach and a practical tool for planning and management policy and operations to protect the water quality and ecosystems of shallow lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.