Abstract

Impurity elimination in tundishes is an essential metallurgical function in continuous casting. If inclusions in a tundish cannot be effectively removed, their presence will have a serious impact on the quality of the bloom. As a result, this research investigates the locations of inclusion particles in a six-strand induction-heating tundish in depth, combining the flow, temperature, and inclusion trajectories of molten steel under electromagnetic fields. The results show that a pinch effect occurred in the induction-heating tundish, and a rotating magnetic field formed in the channel, with a maximum value of 0.158 T. The electromagnetic force was directed toward the center of the axis, and its numerical distribution corresponds to the magnetic flux density distribution, with a maximum value of 2.11 × 105 N/m3. The inclusion particles' movement speed accelerated as the molten steel's temperature rose, and their distribution in the channel was identical to the rotating flow field distribution. When the steel's temperature rose from 1750 K to 1850 K, the removal percentage of inclusion particles in the discharge chamber rose by 9.20%, the removal rate at the outlet decreased from 8.00% to 3.00%, and the adhesion percentage of inclusion particles in the channel decreased from 48.40% to 44.40%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.